Survey Design

WHERE THE WILD THINGS ARE

M. Sendak

Survey Planning

- 1. Set survey objectives
- Determine sampling parameters including: detection thresholds, EDSU, bottom tracking, ping rate (given the maximum depth), transmit pulse width, single-target detection, and echo integration.
- Design transect layout and identify GPS waypoints for transect start and end points and for CTD casts

Use survey objectives and analytic approach to define data requirements

Objectives

- resource assessment (i.e. how many?)
- impact assessment (i.e. impact vs control)
- monitor change (time, space)
- map distribution
- behavior (time, space)

Survey Design Steps

- 1. Define limits (space, time, operational, data)
- 2. Estimate time needed given desired sample density
- 3. Calculate time available
- 4. Choose sample strategy and type of cruise track
- 5. Lay out cruise track

Sampling Principles

Collect:

- data that is representative of the population or area
- data that can be used to estimate abundance in areas not sampled
- data that can be used to estimate total abundance
- data that can be used to estimate precision of a survey

Design Choices

- 1) Balance between direct sampling and acoustic track
- 2) Sample stratification
- 3) Random or systematic designs
 - Random sampling within the domain
 - Systematic, regular with fixed or random start
- 4) Systematic or Adaptive design

Elementary Distance Sampling Unit

 the length of cruise track where acoustic measurements are averaged to give one sample

Possible EDSU's

- collection of pings (arbitrary temporal or spatial averaging unit OR autocorrelation lag distance, variogram sill value OR something else)
- whole transect (may be limited by bathymetry or topography)

Does each location have equal probability of being sampled?

Proportion of Time for Sampling

$$cv = \frac{\sigma}{\mu}$$

In a 3 week survey:

24:25 1/6 time

17:51 1/3 time

Choose 1/5 time for single species, ¼ time for mixed species

Amount of Survey Trackline?

Estimate a baseline distance or start with CV and work backwards

Degree of Coverage Λ

$$\Lambda = \frac{D}{\sqrt{A}}$$
 where D is cruise track length A survey area

Coefficient of variation (CV)

$$CV = \frac{0.5}{\sqrt{\Lambda}}$$

Sample Transect Layout

1. Random

- assumes independent samples
- provides more precise estimate of precision

2. Stratified Random

- depth, habitat
- proportions effort to variance to minimize variance of series

3. Systematic

- grid, boustrophedont, zigzag
- trade-off between independence of samples & series variance
- provides best distribution map
- may change sampling unit relative to other designs
- requires autocorrelation measure to estimate percision

4. Adaptive

allocate effort proportional to variance as sampling is underway

Transect Layouts: Coastal

Parallel grid, boustrophedont

- transect : area $^{1/2} = 6$
- suitable when transect length > 2x
 transect spacing

Zig-zag

- transect apex to area boundary

Random or stratified random

Transect Layouts: Islands & Lakes

Transect Layouts: Constricted Areas

Transect Direction

Anisotropy

 in an anisotropic field, variance is reduced if sampling is along the line with greatest rates of change

Migration

- for unknown migration directions, minimizing time between transects minimizes bias
- spiral designs may help (but difficult to run)
- for known migration directions, surveys with and against the direction of migration reduces bias

Efficiency of Transect Layout

- 1. Random parallel sampling least efficient
- 2. Zig-zag sampling most efficient if low densities
- 3. Stratified parallel sampling most efficient if high densities
- 4. Fish school configuration influences density estimates
- 5. Increasing sampling effort reduces variance due to schooling

Adaptive Sampling

- combines coarse and fine resolution sampling
- different sampling intensities analyzed separately
- effort proportional to variance (how to allocate effort?)

Survey Design: Magnification Factor

Magnification Factor:

- representative fraction of a sample
- interpolation (within) or extrapolation (among) transects to include the area or volume of interest

$$MF = \frac{\text{area or volume of ecosystem}}{\text{total samples* volume of 1 sample}}$$

Example: Iron Hypothesis

- iron limits primary production in tropical ocean (John Martin)
- add iron, increase primary production, reduce atmospheric CO₂, reduce global warming

Sampling Activity: 10⁴ samples

1 sample = 10 cm^3 test tube, total area to sample = 10^{20} cm^3

MF of each sample = 10^{15} ecosystem⁻¹

Sources of Variance

Distributional, Acoustical, Biological

Distributional: precision due to sampling

- unmet assumptions of sample layout
- degree of survey coverage

Acoustical: accuracy due to potential for bias

- equipment calibration and sensitivity
- change in transducer position during mobile surveys
- noise from acoustic system or electrical supply
- hydrographic conditions (e.g. temp and sal on c, bubbles, thermoclines, other critters)

Sources of Variance

Biological: accuracy due to potential for bias

- species composition (single or mixed aggregations)
- density changes
- distributional changes (space or time)
- behavior (tilt, feeding, ship avoidance)
- physiological (feeding, gonad development)
- ontogeny (non-linear growth, development)

Cruise Time Budget

Work time available W = Total (T) - Loading (L) - Steaming (S) - Calibration (C) - Hydrography (H):

$$W = (T - L - S - C - H)$$

P is proportion of day for survey: P = fraction of day for work F is proportion allocated to fishing, t is time for acoustic track:

$$t = W \times P \times (1-F)$$

Distance covered:

Distance = Time (t) x Speed (s): $d = t \times s$

Area coverage

- Uniform sampling (within a strata)
- Approximate transect spacing given by
- Spacing = Survey Area / Distance: S = A / d

Time Overhead Costs

- Loading and unloading equipment
- Steaming to and from survey area
- Calibration
- Direct sampling (e.g. trawling) for biological samples and trace identification
- Any other Oceanographic sampling
- Day / night limitations
- Contingency for weather

Two Analytic Approaches (that influence design)

Classic

- assumes random, independent distributions
- samples are representative of area domain

Geostatistical

- incorporates distribution, autocorrelation, and stocasticity
- transect spacing is important, can be a constraint

Geostatistics

set of methods to characterize spatial structure and incorporate space in estimations (e.g. quantity in a region, variance, value at a point, mapping)

Why estimate? partial knowledge of spatial variable

How to estimate? use a model of the phenomenon

3 Steps: Data Scrutiny, Structural Analysis, Estimation

cf. Rivoirard et al. (2000), Ch. 2&3

Geostatistic Methods

Transitive, Intrinsic

Transitive: variable confined to a finite domain, known or unknown

- tends to 0 outside of domain
- hypotheses about sampling design
- global estimation
- tool: covariogram

Intrinsic: variable can be described within domain and independent of domain geometry

- properties of stationarity
- probabilistic basis

Variogram

$$\gamma(h) = 0.5 \frac{1}{N(h)} \sum_{h=0}^{\infty} [z(x) - z(x+h)]^2$$

where: h = distance, N = number of point pairs, <math>z = variable, x = position

units are the same as variance (i.e. quantity squared)

Distribution Properties from Variogram

Zones of Influence

Variogram Models

- 1. Nugget effect
- 2. Spherical model
- 3. Exponential model
- 4. Gaussian model
- Power model
- 6. Linear model

Applications: used to characterize spatial variance; can be used to 'parameterize' distributions (e.g. kriging)

Example software: EasyKrig by D. Chu on website

http://globec.whoi.edu/software/kriging/easy_krig/easy_krig.html

Geostatistical Abundance Estimate

- 1. Determine spatial independence among samples using variogram
- 2. Determine horizontal sampling frequency using Nyquist (min. R/2)
- 3. Determine spatial independence using variogram
- 4. Impose exterior boundary around region
- 5. Examine for and remove trends (depth, lat, long) if warranted
- 6. Krig backscatter data, replacing trend if warranted

Equipment Check List

ECHOSOUNDER FIELD GEAR LIST - LAKE WASHINGTON - OCTOBER 2015 CLASS TRILP FISHERIES ACOUSTICS RESEARCH - UW SCHOOL OF AQUATIC & FISHERIES SCIENCES BOX 355020 - SEATTLE WASHINGTON, 98195-5020 (206) 221-6864 OR (206) 221-6890 OR (206) 221-5459

NAME:		DATE: LOCATIO	N:			
CHEC	KLIST:					
	CTD Crate	e				
	0	CTD	0	Distilled water		
	0	Download cable	0	tubing		
	Towfish p	od w mount bolts/PI bolts				
	Black Shockmount Case					
	0	o Simrad EK-60: 38 kHz GPT - serial 199 - IP 157.237.14.101				
	0	Simrad EK-60: 70 kHz GPT - serial 545? - IP 157.237.14.102				
	0	Simrad EK-60: 120 kHz GPT - serial 203 - IP 157.237.14.103				
	0	Simrad EK-60: 200 kHz GPT - serial 718? - IP 157.237.14.104				
	0	Ethernet Switch	0	Power strip		
	0	10A and 2A fuses	0	Long orange ethernet cable		
	Action Packer 1					
	0	Extra Ethernet cables: 25', 14', 3'	0	Tape: electrical, labeling		
	0	Power strip x 2	0	Ground cable		
	0	Ratchet straps	0	Headlamps		
	0	Flat clipboard	0	Nobeltec software		
	0	Dummy plugs for GPTs (2)	0	ER software		
	0	Nonskid mats				
	0	Ethernet switch				
	0	GPS splitter including				
		 Serial cables 		 Gender benders 		

Parameter Log Sheet

University of Washington - Fisheries	Acoustics	Research	Lab
EK-60 Parameter	Log		

Date:	Vessel:
Survey Location:	
Personnel:	
Weather	

Serial Numbers

GPS source

Environment

Echosounder Settings

Recording depth

Parameter	38 kHz	70 kHz	120 kHz
Transduœr serial number			
Transduœr depth (m)			
GPS (boat or independent?)			
Water temperature (°C)			
Salinity (ppt)			
Sound speed (m·sec1)			
Absorption (dB·m ⁻¹)			
Transmit power (W)			
Ping rate (•sec ⁻¹)			
Pulse duration (ms)			
Sample interval (m)			
Gain (dB)			
Sa Correction (dB)			
2-Way Beam angle (dB)			
3 dB Beam width - Along (°)			
3 dB Beam Width - Athwart (°)			
Angle offset – Along (°)			
Angle offset – Athwart (°)			
Raw data depth (m)			

Comments / Notes:

Equipment Schematic

Parameter Settings Screen Capture

ansducer parameter: General Transducer name: ES3		am type: SPL	.IT F	Frequency [Hz	:); 38000
Max. power [W]: 2000	0.0		2Way be	eam angle [dB]	-15.9
Pulse length parameters					
Pulse duration [usec]:	256	512	1024	2048	4096
Gain [dB]:	19.00	21.62	22.15	21.50	21.50
SA correction [dB]:	0.00	-0.69	-0.57	0.00	0.00
Angle parameters					
	Alongship	Athwartship			
Angle sensitivity:	12.5	12.5			
3dB beam width [deg]:	12.3	12.1			
Angle offset [deg]:	0.0	0.0			
			ОК	Cancel	Help

Initial Sequence of Events Lab this afternoon

- 1) Agree on survey goals
- 2) Decide on equipment configuration using knowledge of survey area and targets of interest.
- 3) Set up transect survey lines and activity budget given area to be covered and time available.
- 4) Log all data collection parameters and survey design information prior to start of survey.

Advice from E.J. Simmonds

- Check that your design matches your objectives
- Think about the analysis you will do to match your design
- Always try to follow the logic of how your samples will relate to the whole
- If you're not sure of the logic of what you are doing it may not be correct